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Anatomical segmentation of structures of interest is critical to quantitative analysis in medical imaging.
Several automated multi-atlas based segmentation propagation methods that utilise manual delineations
from multiple templates appear promising. However, high levels of accuracy and reliability are needed
for use in diagnosis or in clinical trials. We propose a new local ranking strategy for template selection
based on the locally normalised cross correlation (LNCC) and an extension to the classical STAPLE algo-
rithm by Warfield et al. (2004), which we refer to as STEPS for Similarity and Truth Estimation for Prop-
agated Segmentations. It addresses the well-known problems of local vs. global image matching and the
bias introduced in the performance estimation due to structure size. We assessed the method on hippo-
campal segmentation using a leave-one-out cross validation with optimised model parameters; STEPS
achieved a mean Dice score of 0.925 when compared with manual segmentation. This was significantly
better in terms of segmentation accuracy when compared to other state-of-the-art fusion techniques.
Furthermore, due to the finer anatomical scale, STEPS also obtains more accurate segmentations even
when using only a third of the templates, reducing the dependence on large template databases. Using
a subset of Alzheimer’s Disease Neuroimaging Initiative (ADNI) scans from different MRI imaging systems
and protocols, STEPS yielded similarly accurate segmentations (Dice = 0.903). A cross-sectional and lon-
gitudinal hippocampal volumetric study was performed on the ADNI database. Mean ± SD hippocampal
volume (mm3) was 5195 ± 656 for controls; 4786 ± 781 for MCI; and 4427 ± 903 for Alzheimer’s disease
patients and hippocampal atrophy rates (%/year) of 1.09 ± 3.0, 2.74 ± 3.5 and 4.04 ± 3.6 respectively. Sta-
tistically significant ðp < 10�3Þ differences were found between disease groups for both hippocampal vol-
ume and volume change rates. Finally, STEPS was also applied in a multi-label segmentation propagation
scenario using a leave-one-out cross validation, in order to parcellate 83 separate structures of the brain.
Comparisons of STEPS with state-of-the-art multi-label fusion algorithms showed statistically significant
segmentation accuracy improvements (p < 10�4) in several key structures.

� 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

The hippocampus, along with other structures in the medial
temporal lobe, is one of the first structures where Alzheimer’s dis-
ease pathology is earliest exhibited. It has been shown that mea-
surements of hippocampal volume from volumetric T1 weighted
MRI sequences and changes in volume from serial MRI sequences
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can aid in determining which subjects with mild cognitive impair-
ment (MCI) will go on to develop Alzheimer’s Disease (AD) (Jack
et al., 1999; Ridha et al., 2007; Morra et al., 2009; Schuff et al.,
2009; Henneman et al., 2009; Leung et al., 2010; Wolz et al.,
2010) as well as predict cognitive decline in the earliest stages of
the disease (Jack et al., 2000; Schuff et al., 2009; Wolz et al.,
2010). As a result, there have been recent efforts to define the cri-
teria for the presymptomatic (Sperling et al., 2011) and prodromal
(Dubois et al., 2010) stages of Alzheimer’s disease by incorporating
biomarkers including hippocampal atrophy assessed using MRI. In
a related effort, Jack et al. (2011) has recently provided guidelines
for standardising and qualifying hippocampal volumetry and vol-
ume change measurements as a biomarker for use within clinical
trials. One of the primary applications in clinical trials would be
to use hippocampal volume as a criteria for eligibility into studies
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of therapeutic agents for patients with suspected prodromal AD
and this has recently been recognised by regulatory authorities
(EMA/CHMP/SWAP/809208/2011). The size of such studies mean
that for quick targeted recruitment, efficient and accurate hippo-
campal volumetry techniques are needed. Manual methods are
very time consuming (e.g. 45 min per hippocampus), require care-
ful training and are demanding on the rater and therefore very
expensive (Barnes et al., 2009; Frisoni and Jack, 2011). As a result,
an automated hippocampal segmentation method that was accu-
rate, robust and fast would be extremely valuable.

Segmentation propagation techniques make use of registration
algorithms to align a manually labeled atlas to a new unsegmented
image. The accuracy and robustness of this segmentation can be
greatly improved by combining multiple candidate segmentations
from a library/database of atlases (Rohlfing et al., 2004). In this
way, the segmentation is dependent on the particular morphology
of a single atlas and less vulnerable to errors in one or more regional
labels. Each image from the atlas database, when registered to the
image of interest, can be considered as an independent classifier.
Several techniques for classifier fusion have been developed, where
the most conventional method is a voting scheme (Xu et al., 1992).

As some registrations will be more accurate than others, more
sophisticated techniques to quantify classifier performance have
been developed. The classifiers can be combined according to their
performance on a training set (Lam and Suen, 1995), or by estimat-
ing its performance on a feature or metric space (Woods et al.,
1997). Aljabar et al. proposed to use the global normalised cross
correlation between the registered template and the target image
as a performance estimator in order to select the optimal classifiers
for the voting scheme. While a global metric might be sufficient for
simple shapes, the size of the database has to increase dramatically
for objects with complex morphology in order to characterise the
population’s morphologic variability. Artaechevarria et al. (2009)
proposed a set of local and global performance estimators based
on image similarity metrics like the global normalised cross corre-
lation (GNCC), global mean square difference (GMSD), global mu-
tual information (GMI) and the corresponding local versions of
the metrics, LNCC, LMSD and LMI respectively. Yushkevich et al.
(2010) suggested a modified version of the LNCC metric using a
ranking scheme and Collins and Pruessner (2010) used a GMI met-
ric combined with a registration to a group-wise space in order to
reduce computational cost. More recently, Sabuncu et al. (2010)
reformulated the label fusion problem in a generative framework,
providing a comprehensive probabilistic framework that rigor-
ously motivates label fusion as a segmentation approach, by com-
bining intensity similarity and a log-odds atlas propagation in a
generative framework.

Instead of using an image similarity to derive the classifier per-
formance, Warfield et al. (2004) proposed an algorithm named
Simultaneous Truth and Performance Level Estimation (STAPLE)
as a novel way to estimate the performance parameters of a classi-
fier and consequently obtain the most likely classification. This
framework estimates the classifier performance parameters by
comparing each classifier to a consensus, in an iterative manner.
It is important to note that the STAPLE framework was created
for the purpose of fusing several manual or automated
segmentations of the same image and not for fusing propagated
segmentations. More recently, Asman and Landman (2012) and
Commowick et al. (2012) introduced two reformulations of STAPLE
with a spatially varying rater performance model that attempts to
model miss registrations as part of the rater performance. How-
ever, these methodologies still find a local morphological consen-
sus between the labels, without actually assessing the quality of
the registration. Thus, the STAPLE framework and it’s more recent
reformulations do not explicitly incorporate the concept of atlas
similarity or registration accuracy into the fusion model.
In summary, weighted voting techniques model segmentation
errors as inaccuracies in the registration procedure and assume
that the original manual segmentations do not have any mistakes,
i.e. they are a ground truth. On the other hand, the STAPLE
approach models segmentation errors as a rater performance
problem instead of estimating registration accuracy and morpho-
logical similarity.

In order to make the STAPLE framework aware of registration
errors, Leung et al. (2010) introduced the ranking concept used
in Aljabar et al. (2009) into the STAPLE framework and showed im-
proved segmentation accuracy. However, this global metric still
suffers from the problems described above (e.g. complex morphol-
ogy, local matching). Also, the GNCC metric is dependent on the
ROI where it is calculated and is not robust to intensity non unifor-
mity (INU) in MRI images.

We propose and validate a new strategy that incorporates a lo-
cal similarity metric to estimate the expected image-based perfor-
mance of each classifier on a voxel-by-voxel basis into a STAPLE
formulation. This is the first time a local ranking and sampling
strategy has been introduced into the STAPLE framework. We also
introduce a new Markov Random Field (MRF) model optimised
iteratively over the probabilistic labels in order to add spatial con-
sistency and smoothness between the best local classifiers. This
LNCC metric can cope with spatially variant registration accuracy,
enabling the use of smaller template databases. Due to the local
nature of the algorithm, it is independent of the selected ROI and
more robust to INU in MRI images.

To the best of our knowledge, this is the first time a spatially
variant image similarity term is introduced in a STAPLE framework,
enabling the characterisation of both image similarity and human
rater performance in a unified manner.

2. Methods

In this section, we first introduce the mathematical framework
as presented in the original STAPLE algorithm by Warfield et al.
(2004). We then introduce the idea of global and local ranking
and the subsequent STAPLE model changes. Finally, we extend
the full framework to a multi-label scenario.

2.1. The STAPLE algorithm

Let an image with N voxels be denoted by y, with the intensity
at voxel i denoted by yi. Also, let t be an indicator vector of size N,
again indexed by ti, representing the hidden binary true segmenta-
tion of the object. The value of ti will be equal to 1 when the struc-
ture is present in position i and equal to 0 when the structure is
absent in position i. Let the d be a matrix of size R� N, with each
one of its rows djrepresenting a candidate segmentation of the ob-
ject of interest obtained either by manual segmentation or an auto-
matic algorithm. This row vector dj has the same form as t, with 1
and 0 representing the presence and absence of the structure at
each position i. In order to parameterise the sensitivity and speci-
ficity of each rater, let p ¼ ðp1; p2; . . . ; pRÞ

T and q ¼ ðq1; q2; . . . ; qRÞ
T

represent the sensitivity and specificity of each one of the R candi-
date segmentations, indexed by j. Here, p and q represent a global
measure of agreement and disagreement, respectively, between a
candidate segmentation and the consensus. Thus, they do not de-
pend on the image index i. In order to estimate t, one needs to
maximise the log likelihood of the complete data of this problem
ðd; tÞ given the set of parameters ðp;qÞ. Thus, the cost function
being optimised is the logarithm of the complete data likelihood
f ðd; tjp;qÞ, described as

ðp̂; q̂Þ ¼ arg max
p;q

logðf ðd; tjp;qÞÞ: ð1Þ
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Using the definition of sensitivity and specificity, p and q can be de-
scribed as the ‘‘true positive fraction’’ and ‘‘true negative fraction’’.
Thus, pj and qj can be represented by

pj ¼ Prðdij ¼ 1jti ¼ 1Þ;
qj ¼ Prðdij ¼ 0jti ¼ 0Þ:

This model assumes that the candidate segmentations are indepen-
dent from each other and thus pj ? pj0 ; qj ? qj0 and dij ? dij0 ; 8j – j0.
Eq. 1 can thus be maximised by an Expectation–Maximisation algo-
rithm. The notation wk

i is used to represent the expected probability
of the true segmentation at voxel i being equal to one at iteration k.
Here, wk

i is then defined as

wk
i � f ti ¼ 1jdi;pk;qk

� �
ð2Þ

¼ ak
i

ak
i þ bk

i

ð3Þ

with

ak
i � f ðti ¼ 1Þ

Y
j

f dijjti ¼ 1;pk
j ; q

k
j

� �
ð4Þ

bk
i � f ðti ¼ 0Þ

Y
j

f dijjti ¼ 0; pk
j ; q

k
j

� �
ð5Þ

and the parameters (p; q) at iteration ðkþ 1Þ are optimised by

pkþ1
j ¼

P
iw

k
i dijP

iw
k
i

ð6Þ

qkþ1
j ¼

P
ið1�wk

i Þð1� dijÞP
ið1�wk

i Þ
: ð7Þ

A more detailed explanation of the model derivation can be found in
Warfield et al. (2004).

2.2. Iterative MRF regularization

Similarly to the original STAPLE algorithm, a Markov Random
Field (MRF) is used to add spatial consistency. The MRF model pre-
sented in the original STAPLE paper is a post processing step that
works on integer labels and not on the probabilities. In order to
introduce the MRF spatial consistency within the same optimisa-
tion framework, the model presented in Cardoso et al. (2011a) is
used. This model is not only computationally more efficient than
the MRF model presented in the original STAPLE algorithm (War-
field et al., 2004), as it is updated with a mean field approximation,
but it works on probabilistic labels and not on the final binarised
labels.

This MRF model can be described as a non-binary multi-class
extension of the Potts model with the neighbouring clique strength
dependent of the voxel size. It has the form

f ðti ¼ kÞ ¼ pe
�biUMRFðti¼kÞ

P
jpje

�biUMRFðti¼jÞ

with

UMRFðti¼kÞ ¼
X1

j¼0

hkj

X
l2Nx

i

sx wlj þ
X

l2Ny
i

sy wlj þ
X

l2Nz
i

sz wlj

0
@

1
A

where H is a K � K matrix with element hkj containing the transition
energy between the class k and the class j;wlj � f tl ¼ jjdl;pk;qk

� �
and with the MRF neighbourhood system defined as
Ni ¼ Nx

i ;N
y
i ;N

z
i

� �
. Here, Nx

i ; N
y
i ; N

z
i represent the two direct

neighbours of i in the x; y and z directions respectively. Also, pk is
the proportion of the object k in the full image, estimated from w
at each iteration and sx; sy and sz are the inverse of the voxel size
in the x; y and z directions respectively. Note that pk can be made
spatially varying by using a Log-Odds framework as the one from
Sabuncu et al. (2010). As the presented formulation only has two
classes, the MRF matrix H is set up with the diagonal elements
equal to 0 and the off-diagonal elements equal to 1.

When applying this MRF model in a multi-label fusion scenario,
the MRF energy function can be extended to incorporate anatomi-
cally derived information about the expected neighbourhood tran-
sitions as in Cardoso et al. (2011a). Conversely, the classical MRF
presented by Warfield et al. (2004) assumes that the transition be-
tween every pair of classes has the same probability. For the rest of
the paper, bi is considered constant throughout the image and
equal to 0.5. Both the value of bi and the matrix H can be optimised
in order to improve the overall results. Nonetheless, we’ll refrain
from this optimisation due to it’s computational complexity.

2.3. Global and region-of-interest based ranking

In the original STAPLE paper, Warfield et al. (2004) states that
implicit in this model is the notion that the experts have been
trained to interpret the images in a similar way. The segmentation
decisions may differ due to random or systematic rater differences,
and a probabilistic estimate of the true segmentation can be for-
mulated as an optimal combination of the observed decisions
and a prior model. Thus, these implicit assumptions may not hold
when STAPLE is used for segmentation propagation. For segmenta-
tion propagation purposes, the errors can come from different
morphological characteristics between the images, bad registration
results and even the resampling method.

In order to ameliorate this problem, Aljabar et al. (2009) pro-
posed the use of a global normalised cross correlation (GNCC)
based metric to rank the registered templates according to the im-
age being segmented in order to only include propagated segmen-
tations that are consistently accurate. Leung et al. (2010) then
introduced the same concept in a STAPLE framework, where the
GNCC was calculated on a region of interest defined by the union
of the propagated labels, resulting in an improved segmentation
accuracy. This metric was used because it was shown to provide
a good criterion for template selection in multi-centre imaging
data (Aljabar et al., 2009). Once a rank of best to worst matches
for each template was established, a subset of the highest ranked
matchers was used to propagate the template labels onto the
images to be segmented. This methodology still has some limita-
tions, because the morphology of the structure and the quality of
the registration is characterised as a single global image metric
based on the NCC. Thus, in order to provide a good segmentation,
either the registration algorithm must perform well in most cases,
or the database has to have enough samples with the relevant type
of morphology for the image being segmented. For example, if one
wants to segment the temporal cortex of a patient’s brain using
segmentation propagation, the database would have to be large en-
ough to contain enough templates with the same morphological
features (e.g. number of sulci and giri) as the image to be seg-
mented, so that the registration algorithm can match these fea-
tures. Also, the registration might work very well in some areas
but less well in other areas, leading to an ambiguous NCC value
and to the introduction of errors in the label fusion process.

2.4. Local ranking for segmentation propagation

Without loss of generality, in this work, the local image similar-
ity between images is assessed using the fast locally normalised
correlation coefficient (LNCC), as proposed by Cachier et al.
(2003). This choice of LNCC is contrary to what was suggested by
Artaechevarria et al. (2009), as we have found better performance
with a LNCC based image similarity than with the local mean
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squared difference (LMSD). Nonetheless, the framework is general
enough to allow any image similarity to be used.

The fast LNCC image similarity used in this work is similar to
the LNCC presented by Artaechevarria et al. (2009) but the mean
and standard deviation are calculated on a local Gaussian window
using a convolution method. This makes the LNCC estimate
smoother and computationally less expensive. Let x represent a
propagated intensity image from the atlas after registration and
y represent the target image to be segmented. Under this formula-
tion, the LNCC at position i will be given by

LNCCi ¼
hy;xii

riðyÞriðxÞ

where

hy;xii ¼ lðy � xÞi � lðyÞi � lðxÞi lðy � xÞi ¼ Gr � ðy � xÞ
lðyÞi ¼ Gr � y lðxÞi ¼ Gr � x

riðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðy2Þi � lðyÞ2i

q
riðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðx2Þi � lðxÞ2i

q

with y2 representing the element-by-element squaring of y; �
denoting the convolution operator, Gr denotes a Gaussian smooth-
ing kernel with standard deviation r, and � denotes an element-by-
element multiplication.

Due to the local nature and smoothness of the metric, the sim-
ilarity between the images is described on a smooth voxel by voxel
basis, enabling a voxel by voxel ranking with reduced discontinuity
effect. If, for example, one starts from a set of 15 template images
registered to the image under study, one can then calculate how
much each one of the template images correlate locally with the
image under study and then take only the top five templates on
a voxel by voxel basis. There are three main advantages to the pro-
posed method compared to using GNCC: first, the global nature of
the GNCC metric may be an unrealistic assumption regarding the
complex morphology and shape of the object under study. Sec-
ondly, it removes the need to create a ROI for GNCC calculation
as the metric itself is local. Finally, this method is more robust to
the presence of INU in MRI images, as the local nature of the LNCC
method obviates the metric bias due to INU.

2.5. STAPLE with local ranking

In order to introduce this local ranking information in the pre-
viously described STAPLE algorithm, let a new model variable lij

represent an observed cluster assignment that characterises the
image similarity. For the sake of simplicity, lij will be equal to 1 if
the image gk is in the top X ranked images at position i and equal
to 0 otherwise. Here, X controls the number of images to use locally
according to the LNCC.

This new observation lij can be integrated into the STAPLE
framework by altering the model to

ðp̂; q̂Þ ¼ arg max
p;q

logðf ðd; t; lj � p;qÞÞ ð8Þ

Using Jensen’s inequality, the lower bound on the model will be gi-
ven by

Qðp̂; q̂Þ ¼
X

T

X
i

f ðtijdi; li;p;qÞlog f ðdi; lijti;p;qÞf ðtiÞ½ � ð9Þ

where f ðdi; lijti;p;qÞ is defined as a Bernoulli over a Bernoulli
distribution

f ðdi; lijti;p;qÞ ¼
Y

j

f ðdijjti;pj; qjÞ
ti :f ðdijjti; pj; qjÞ

ð1�tiÞ
h ilij

0ð1�lijÞ ð10Þ

with ti determining the true segmentation label and the observation
lij determining if a template j is either a local morphological inlier or
an outlier, i.e. if template j is similar or dissimilar to the target
image after registration. As we are only interested in the subset of
the data where lij ¼ 1, a restricted maximum likelihood (REML) ap-
proach is used to focus on the likelihood of a subset of the data,
where

wk
i � f ti ¼ 1jdi; lij ¼ 1;pk�1;qk�1� �

¼ ai

ai þ bi
ð11Þ

with

ai � f ðti ¼ 1Þ
Y

j:lij¼1

f ðdijjti ¼ 1;pk�1
j ; qk�1

j Þ

¼ f ðti ¼ 1Þ
Y

j:flij ;dijg¼f1;1g
pk�1

j

Y
j:flij ;dijg¼f1;0g

1� pk�1
j

� �

bi � f ðti ¼ 0Þ
Y

j:lij¼1

f ðdijjti ¼ 0; pk�1
j ; qk�1

j Þ

¼ f ðti ¼ 0Þ
Y

j:flij ;dijg¼f1;1g
qk�1

j

Y
j:flij ;dijg¼f1;0g

1� qk�1
j

� �
:

ð12Þ

Here, pj and qj will now be

pk
j ¼

P
i:lij¼1wk

i dijP
i:lij¼1wk

i

ð13Þ

qk
j ¼

P
i:lij¼1wk

i ð1� dijÞP
i:lij¼1wk

i

: ð14Þ

In this REML framework, ai; bi; pi and qi are only influenced by the
locations where lij ¼ 1, i.e. only on the locations where the template
image is locally similar to the image being segmented.

In this modification to the classic STAPLE algorithm, qj and pj

now represent the sensitivity and specificity only in areas where
lij ¼ 1, i.e. each classifier is considered an expert by the LNCC rank-
ing strategy. This results in a 2 step performance estimation that
decouples the two sources of error: one based on the LNCC image
similarity metric observation, modelled through lij, characterising
the non uniform registration accuracy and shape differences, and
the other step characterising the specificity and sensitivity of each
classifier, through pj and qj, when compared with the consensus
classification.

In this algorithm, we use a LNCC ranking-based binary cluster
assignment for the observed variable lij. This approach is analogous
to a sampling scheme, where samples with low local similarity are
rejected from the fusion. However, the framework allows non-bin-
ary cluster assignments, where different samples can have differ-
ent importance weights.

2.6. Performance parameter bias due to structure size

In the original STAPLE formulation, the performance parameters
are estimated using all the samples from the image. More recent
strategies by Rohlfing et al. (2004) and Asman and Landman
(2011) have restricted the number of samples that are used to
non-consensus areas in order to increase performance while re-
duce bias. Similarly, in this formulation and in STAPLE, if the size
of the object and the size of the background are very different,
the algorithms convergence results in both mathematical precision
issues (due to the limited floating-point accuracy representation of
q and p) and biased performance parameters. For example, in a sit-
uation where the size of the object is much smaller than the back-
ground, the specificity qj will tend to 1 because

P
iwið1� dijÞ will

be approximately the same as
P

iwi as most pixels in the image
are di ¼ 0. Equally, due to the small size of the object,

P
iwidij will

be much less similar to
P

iwi and thus pj will not be as close to 1 as
qj. This effect can be seen in Warfield et al. (2004) Table 1 and 2.
When these biased values of pj and qj are then used to calculate
the new wij; bi will tend to 0, and thus wij will tend to 1. If the



Table 2
Dice score statistics for hippocampal segmentation on 30 ADNI subjects using: STEPS,
and the methods by Sabuncu et al., Yushkevich et al., Artaechevarria et al., all using
the previously optimised parameters.

Fusion STEPS Sabuncu Yushkevich Artaechevarria Spatial-STAPLE

Mean 0.903 0.870 0.875 0.874 0.880
SD 0.019 0.014 0.018 0.019 0.015
Median 0.907 0.870 0.877 0.875 0.879
p-Value – 0.001 0.006 0.004 0.007
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STAPLE output wij is then thresholded at 0:5 confidence, the object
will look over-segmented. In order to avoid an over-segmentation
effect, one tends to threshold wij at very high values, e.g. a thresh-
old of 0.9999, as used in (Leung et al., 2010). The optimal threshold
will depend on many factors like the number of classifiers used, the
mean value of p and q and even the value of b for the MRF. Also,
because the value of wik will be very close but different from 1,
numerical precision becomes an issue. Due to all these issues and
given that this threshold is normally set to a constant value within
the same study (even if more classifiers are used), the performance
results of the STAPLE classifier fusion have a characteristic bumpy
shape (Leung et al., 2010). Furthermore, the performance peak in
terms of segmentation accuracy will depend on the chosen thresh-
old, making all the analysis biased towards this choice.

Rohlfing et al., 2004 suggested that only updating and using dis-
puted samples for parameter estimation can improve the computa-
tion time. One should note that this approach not only improves
the computation time, but most importantly, it also improves seg-
mentation performance by reducing the p and q unbalance and
consequently the numerical precision issues. Thus, instead of try-
ing to empirically set a threshold on the STAPLE probabilistic out-
put, we restrict the parameter optimisation to non-consensus
voxels. Thus, all the voxels where dij is equal to either 0 or 1 for
all experts j are removed from the estimation. This method as-
sumes that if all the classifiers agree on a label at a certain spatial
position i, then the voxel is marked as solved and is not taken into
account for the estimation of pj and qj. In this case, pj and qj repre-
sent the sensitivity and specificity only in ambiguous voxels, thus
ameliorating the bias caused by structure size. One can then
threshold wij at 0.5 without causing over-segmentation of the ob-
ject. The effect of this step in terms of the shape of the performance
results curve will be shown in the validation section.

In summary, the proposed method, named STEPS (Similarity
and Truth Estimation for Propagated Segmentations), can be de-
scribed as a combination of the LNCC ranking, the MRF and two
STAPLE modifications regarding both the introduction of the local
indicator function lij and the removal of consensus voxels from
the parameter estimation.
2.7. Multi-label extention

Let t be an indicator vector of size N, indexed by ti, representing
the hidden true label describing several objects under analysis.
This hidden label is denoted by an integer value f1;2; . . . ; cg, with
each value representing a different object of interest, from a total
of c objects. Now, let d be a vector of size R, with each one of its
Table 1
Leave-one-out cross validation statistics for different ranking methods and fusion approach
Warfield et al. (STEPS-bMRF), STEPS including consessus areas (STEPS-cons), and the metho
et al. (2010), Sabuncu et al. (2010) and Artaechevarria et al. (2009).

Fusion STEPS STEPS-nMRF

Param. X ¼ 15; r ¼ 1:5 X ¼ 15; r ¼ 1:5
Mean 0.925 0.919
SD 0.015 0.018
Median 0.929 0.918
p-Value – < 10�4

95% CI – 0.004–0.007

Fusion Leung Asman

Param. X = 6, D = 2 w ¼ 0:2; j ¼ 1
Mean 0.909 0.919
SD 0.015 0.015
Median 0.913 0.918
p-Value < 10�4 < 10�4

95% CI 0.014–0.018 0.004–0.007
elements dr representing a candidate segmentation of the object
of interest obtained either by manual segmentation or an auto-
matic algorithm.

In order to extend the concept of sensitivity and specificity of a
segmentor j into a multi-class model, a confusion matrix Nj and its
row normalised equivalent kj, similar to the ones presented in Xu
et al. (1992) and Rohlfing et al. (2004), are introduced in the nota-
tion. The matrix Nj is defined as

Nj ¼

nj11 nj12 . . . nj1c

nj21 nj22 . . . nj2c

..

. ..
. . .

. ..
.

njc1 njc2 . . . njcc

0
BBBB@

1
CCCCA

with each element njab denoting that n samples of class a have been
assigned a label b by segmentor j. The elements of the matrix kj are
then defined as

kjða; bÞ ¼
njabP

cnjab

Similarly to Rohlfing et al. (2004), using the new definition of the
performance parameter kj, the posterior probability for sample i
to belong to class c will then be

wia ¼
f ðti ¼ aÞ

Q
j:lij¼1kjða;dijÞP

cf ðti ¼ cÞ
Q

j:lij¼1kjðc; dijÞ

and the performance parameter matrices kj are updated at each
iteration by setting

kjða; bÞ ¼
P

i:flij ;dijg¼f1;bgwiaP
i:flijg¼f1gwia

In a multi-label scenario, instead of thresholding the output of wia at
a certain value, the label with the highest value of wia at each posi-
tion i is considered the optimal label.
es: STEPS, STEPS without MRF (STEPS-nMRF), STEPS with the MRF model proposed by
ds in Asman and Landman (2012), Aljabar et al. (2009), Yushkevich et al. (2010), Leung

STEPS-bMRF STEPS-Cons Aljabar

X ¼ 15; r ¼ 1:5 X ¼ 9; r ¼ 1:5 X = 17, D = 2
0.920 0.921 0.907
0.017 0.014 0.016
0.919 0.922 0.909

< 10�4 < 10�4 < 10�4

0.004–0.009 0.004–0.006 0.016–0.020

Yushkevich Artaechevarria Sabuncu

a = 1, r = 1.5 p = �5, r = 8 r = 15, q = 1
0.919 0.917 0.916
0.013 0.014 0.013
0.919 0.915 0.913

< 10�4 < 10�4 < 10�4

0.004–0.007 0.004–0.009 0.005–0.009



Fig. 1. From left to right: (Top) The image to segment, four samples from the
simulated template database. (Centre) The ground truth segmentation and the
respective labels from the template database with different morphologies and
simulated registration errors. (Bottom) The probabilistic segmentation using the
method from Leung et al. (left) and STEPS (right). Note that the lack of local
matching has limited the ability of the GNCC method to capture the local features
due to the morphologically restricted database.

676 M. Jorge Cardoso et al. / Medical Image Analysis 17 (2013) 671–684
3. Validation

The validation of the proposed method is divided into two com-
ponents, one for single label fusion and one for multi-label fusion.
As the availability of manual segmentations is much greater for
single labels, the validation of the proposed method for label fusion
of individual structures was performed in five steps:

1. The method was applied to synthetic data to show the effect of
STEPS on a simulated data set with different morphological
properties.

2. We assessed the contribution of each improvement proposed in
STEPS and then validated STEPS against other label fusion tech-
niques using leave-one-out cross validation.

3. Using the optimised model parameters, a leave-one-group-out
validation (jackknifing) was done to demonstrate robustness
to simulated database size reduction.

4. Validation was then done on a subset of the publicly available
ADNI database in order to show robustness to different atrophy
states and imaging protocol.

5. STEPS was finally applied to the ADNI database to show volu-
metric group differences.

Due to the limited availability of template databases with mul-
tiple labels, only one validation step was performed for this sce-
nario. Here, the performance of STEPS was compared to a set of
state-of-the-art fusion techniques when segmenting a set of 30
brain images with 83 manually segmented structures using a
leave-one-out cross validation.
3.1. Phantom validation

In order to validate the advantages of local ranking versus glo-
bal ranking under a constrained experiment, a set of six simulated
anatomical images with corresponding ground truth labels was
generated. Each image represents a highly folded structure similar
to the cortex, with the simulated intensities in line with anatomi-
cal T1 weighted MRI images. Rician noise was then added to the
simulated anatomical images by adding Gaussian noise to both real
and complex components in the Fourier domain. These six images
have different number of gyri, representing different morphologies
of the brain. One of these images was chosen as the image to seg-
ment and the other 5 were used as a template database. In order to
simulate mis-registrations, 3 small random deformation fields
were generated and applied per template (see Fig. 1(top right)),
resulting in 15 different templates with 5 different morphologies,
each one with a corresponding label. The proposed method’s seg-
mentation was compared to the GNCC-ranked STAPLE (Rohlfing
et al., 2004,Yushkevich et al., 2010) using the Dice score as a per-
formance metric. For both the method proposed by Leung et al.
and STEPS, we took the top five templates ranked globally (accord-
ing to the GNCC) and locally (according to the LNCC) respectively.

Results are shown in Fig. 1. Using a leave-on-out cross valida-
tion, the mean Dice score for STEPS and the Leung et al. based
method was 0.939 and 0.753 respectively.
3.2. Hippocampal segmentation

This section validates the performance of the proposed
technique for hippocampal segmentation. A previously described
hippocampal template library of manually segmented regions,
from 55 subjects, was used (Barnes et al., 2008). The subjects in
the template library included 36 subjects with clinically diagnosed
AD and 19 controls who had a mean age of approximately 70 years.
All scans were acquired at a single site 1.5 T GE scanner using a
volumetric T1-weighted sequence. The left and right hippocampal
regions were segmented by an expert segmentor. In order to
increase the template database size, each image and its flipped
mirror image were used as templates, resulting in 110 templates
with associated segmentations.

In order to assess STEPS, we performed a leave-one-out seg-
mentation validation on all the images. For each image, the
remaining 108 templates from the other 54 subjects were used
in order to minimise bias due to same-subject left–right hippocam-
pal symmetry. Each template was first affinely registered (12
DOFs) using a block matching approach (Ourselin et al., 2000;
Ourselin et al., 2001) and then non-rigidly aligned using a fast
free-form registration algorithm (Modat et al., 2010) to the image
under study. The resulting transformations were used to propagate
the manual segmentations to the image under study and resam-
pled using nearest-neighbour interpolation in order to maintain
their binary nature.

This section of the validation has two main purposes. First, is to
validate the influence of each component of the method, i.e. LNCC,
MRF and consensus voxel removals. In order to do so, the proposed
method was compared with the ROI normalised cross correlation
(ROINCC) based ranking under a majority voting and STAPLE fusion
strategies as proposed by Aljabar et al. (2009) and Leung et al.
(2010) respectively, thus assessing the merit of adding the local
ranking strategy. The proposed MRF model was also compared to
the model proposed in (Warfield et al., 2004) (here referred as
STEPS-bMRF), in order to test the merit of the iterative and proba-
bilistic MRF. Finally, the influence of removing consensus areas
was tested by running STEPS including consensus voxels.

The second purpose of this validation section is to validate the
performance of STEPS against state-of-the art methodologies. Thus,
STEPS was also compared with spatial-STAPLE (Asman and Land-
man, 2012), the method by Sabuncu et al. (2010), LNCC weighted
voting presented in Yushkevich et al. (2010) and the MSD weighted
voting presented in Artaechevarria et al. (2009). All methods were
implemented as part of the NiftySeg package, except the Spatial-
STAPLE and the method by Sabuncu et al. (2010), where we use
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the implementations provided by the authors, available at
http://masi.vuse.vanderbilt.edu and http://people.csail.mit.edu/
msabuncu/ respectively.

Note that all these comparisons only test the merit of the fusion
strategy and not the performance of the full pipeline, as all the
templates are registered in the same manner. the code provided
by Sabuncu et al. (2010) was modified, as suggested by the author,
in order to accept the same registration strategy.

3.3. Parameter optimisation and algorithm comparison

In order to optimise the fusion parameters, the Dice score be-
tween the estimated segmentation and the manual segmentation
was calculated for different values of Gaussian kernel size, number
of labels used and registration parameters. The parameters for all
the other methods were also optimised.

For all other methods based on ranking, we took the top X
ranked images, with X varying between 3 and 25. Only odd num-
bers of X were used in majority voting to avoid bias due to voting
ties. For the LNCC ranking the images were locally ranked by set-
ting lij ¼ 1 if the registered template k was in the top X ranked
images at position i and to 0 otherwise. For the LNCC ranking in
STEPS the value of r was varied between 1 mm and 2 mm with
an increment of 0.25 mm and between 2 mm and 6 mm with an
increment of 1 mm, for each value of X, in order to find the optimal
Gaussian kernel size. Regarding the other parameters, the region of
interest in Aljabar et al. (2009) and Leung et al. (2010) was defined
as the union of all the propagated labels dilated D times. The
parameter D was also optimised. For each value of X, D was varied
between 1 and 4.

The parameters for the methods that are not based on ranking,
like the method proposed by Asman and Landman (2012);
Fig. 2. Segmentation results showing the best, an average and the worst result. The blu
overlap between both segmentations respectively. (For interpretation of the references to
Yushkevich et al. (2010); Artaechevarria et al. (2009); Sabuncu
et al. (2010), were also optimised. As suggested in the original pa-
per, the Spatial-STAPLE window size w was varied between 0.1 and
0.3 (sampling spacing 0.1), the global performance level bias j was
assessed at samples 0.1, 1 and 10 and the overlap between win-
dows was set to 0.5. For Yushkevich et al. (2010), the value of a
was varied between 0.5 and 2 (sampling rate 0.5) and r was varied
between 0.5 and 2.0 (sampling rate 0.5). For Artaechevarria et al.
(2009), the value of p was varied between �10 and 10 (sampling
rate 5) and r was varied between 4 and 16 (sampling rate 4). Final-
ly, the parameters for Sabuncu et al. (2010) were optimised, also as
suggested in the original paper, with r varying between 5 and 15
(sampling spacing 5) and q varying between 0.5 and 1.5 (sampling
spacing 0.5).

The registration parameters were not optimised within the
same scheme due to computational complexity. They were only
visually optimised on a subset of 10 images in order to produce
good registration accuracy. The optimal registration parameters
were found to be 2.5 mm control-point spacing with 1% bending
energy as regularisation. Due to the overestimation explained in
Section 2.6, a constant threshold of 0.9999 was used for all the
STAPLE based methods, in order to obtain the final binary segmen-
tation. This threshold is identical to the one used in Leung et al.
(2010). For all other methods, the threshold was set to 0.5 due to
their unbiased nature.

In order to assess the accuracy of the segmentation, the Dice
score was calculated between the ground truth manual segmenta-
tion and the obtained binary segmentation. An example segmenta-
tion from STEPS is shown in Fig. 2 and the Dice scores for different
parameters using STEPS are shown in Fig. 3. The optimal parame-
ters are shown in Fig. 4. For STEPS, STEPS without the proposed
MRF regularisation and STEPS with the MRF model proposed in
e, red and green colours represent the ground truth, the proposed method and the
colour in this figure legend, the reader is referred to the web version of this article.)

http://masi.vuse.vanderbilt.edu
http://people.csail.mit.edu/msabuncu/
http://people.csail.mit.edu/msabuncu/
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(Warfield et al., 2004), the optimal parameters are X ¼ 15 and
r ¼ 1:5 (Mean Dice = 0.925, 0.919 and 0.918 respectively). The
parameters X ¼ 9 and r ¼ 1:5 (Mean Dice = 0.921) are optimal
for STEPS without the consensus voxels rejection as in for the fu-
sion approach, as in Cardoso et al. (2011). The parameters X ¼ 6
and D ¼ 2 (Mean Dice = 0.909) and X ¼ 17 and D ¼ 2 (Mean
Dice = 0.909) are optimal for the fusion approach in Leung et al.
(2010) and in Aljabar et al. (2009). The best parameters for the Spa-
tial-STAPLE method proposed byAsman and Landman, 2012 was
fw;jg ¼ f0:2;1g (Mean Dice = 0.914). Finally, the parameters for
the fusion approaches in Yushkevich et al. (2010); Artaechevarria
et al. (2009) and Sabuncu et al. (2010) were found to be
fa;rg ¼ f1;1:5g; fp; rg ¼ f�5;8g and fr;qg ¼ f15;1g respectively.
The mean Dice score was 0.919, 0.917 and 0.916 respectively.
These optimal parameters are used for all comparisons. The Dice
score statistics for all methods are shown on Table 1 and Fig. 4.

Using a two tail unequal variance paired t-test, STEPS per-
formed significantly better (p < 10�4) than all the other ranking
and label fusion strategies for hippocampal segmentation. Confi-
dence intervals for the mean differences, shown in Table 1, were
found assuming normality of the paired differences. Interestingly,
the standard deviation of the Dice score did not increase between
STEPS and the regionally ranked fusion algorithms. STEPS achieves
very high Dice score (0.907) for the 10th percentile data, with the
worst segmentation having a Dice score of 0.888. For comparison,
the method by Leung et al. (2010) and by Aljabar et al. (2009) only
achieved Dice scores of 0.886 and 0.890 respectively for the 10th
percentile and a Dice scores of 0.819 and 0.830 respectively for
the worst segmentation. Furthermore, the proposed method
(STEPS) has a Dice score equal or higher than all other methods
for all data sets. The methods by Yushkevich et al. (2010); Artaech-
evarria et al., 2009; Sabuncu et al., 2010 and Spatial-STAPLE all
show improved results when compared to both Leung et al.
(2010) and Aljabar et al. (2009). However, when compared to
STEPS, they still perform significantly worse.

3.4. Robustness to database size reduction

One of the main caveats of global ranking methods is the impli-
cit necessity to have a large database in order to be able to repre-
sent the population’s global anatomical variability. Conversely,
STEPS describes image similarity on a local manner. Intuitively,
this means that fewer templates are needed to describe the global
anatomical variability of a population, as each template contrib-
utes locally to the global anatomical variability.

In order to test this hypothesis, we used the same data set as be-
fore. However, instead of using a leave-one-out approach, we used
a subset of the available template database (110 templates) by
selecting a smaller set of templates randomly (jackknifing). This
is done in order to study the effect of reducing the size of the tem-
plate database on the results. Assuming a simulated template data-
base of size R, for each data set in the original database, 10 sets of R
samples were randomly selected from the remaining 108 tem-
plates from 54 subjects. Each one of these 10 sets was then consid-
ered as a simulated database of size R used to segment the data set
under study. The optimised parameters described in Section 3.2
were used in order to obtain the fused segmentations. For the sake
of comparison, STEPS was compared to the method by Leung et al.
(2010) and also to STEPS without excluding the consensus areas
(STEPS-Cons).

The degradation was tested at three different levels of R (30, 60
and 90), with X varying between 5 and 25 (sampled only at odd
values). Thus, 36,300 fusions were performed for each method,
producing 10 segmentations per data set, per value of X and per va-
lue of R. The resulting Dice score are presented in Fig. 5. Using an
unequal variance paired t-test to compare the Dice scores, STEPS
performed significantly better (p < 10�4) using only 30 templates
than the ROINCC method using the full database.

3.5. Validation on a subset of the ADNI database

In order to characterise the accuracy of using a predefined
template database to segment data sets from another database,
an expert segmentor manually delineated the left hippocampus
on the baseline and repeat T1-weighted MR images of 30
randomly selected subjects (IDs available in Appendix B). The
data consists of 10 Alzheimer’s disease (AD), 10 Mild Cognitive
Impairment (MCI) and 10 controls, from the ADNI data set. Repre-
sentative imaging parameters were TR = 2400 ms, TI = 1000 ms,
TE ¼ 3:5 ms, flip angle ¼ 8� with either a 1:25� 1:25� 1:2 mm3

or a 0:94� 0:94� 1:2 mm3 voxel resolution. The T1-weighted vol-
umetric scans were already pre-processed using the standard ADNI
pipeline, including post-acquisition correction of gradient warping,
B1 and INU correction and phantom based scaling correction.

The optimised parameters obtained above were used to seg-
ment this subset of the ADNI dataset. Segmentation accuracy was
accessed by calculating the Dice score between the manual and
automated segmentations. Results are shown in Table 2. Statistical
differences were calculated using a two tail unequal variance
paired t-test. The mean (SD) Dice score for STEPS was 0.903
(0.021), significantly higher than all the other methods (Yushke-
vich et al., 2010; Sabuncu et al., 2010; Artaechevarria et al., 2009
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and Spatial-STAPLE) at p < 0:01. The means, std, medians of the
Dice scores and the p-values when compared to STEPS results are
available in Table 2.

3.6. Hippocampal measures on the full ADNI data-set

In this section, the ADNI data sets were used to assess both
hippocampal volume and change in volume over time (atrophy
rate). As suggested in Lötjönen et al. (2011), in order to add PV
information to the binary hippocampal segmentation and thus
increasing statistical power, each image was also segmented using
LoAd (Cardoso et al., 2011a). Hippocampal volume was considered
as the sum of the GM fractional content at each voxel position
within the binary segmentation obtained from STEPS, multiplied
by the voxel size. The volumes of the left and right hippocampi
were added together to give ‘‘total’’ hippocampal volume for each
subject.

For the sake of comparison with previously published studies,
only the baseline and 12-month repeat volumetric T1-weighted
MR scans acquired using 1.5 T scanners were used. In total, 682
subjects were used (200 controls, 335 MCI and 147 AD). The scans
were pre-processed following the standard ADNI pipeline, summa-
rised in Leung et al. (2010). Demographics are shown in Table 3.

Linear regression was used to assess differences in volumes and
change in volumes across groups. The volume, calculated as de-
scribed above, is considered as dependent observed data. For
cross-sectional analysis, the metadata available from the ADNI
database comprising of age and gender was used as independent
confounding variables. The total intracranial volume (TIV),
obtained automatically using SPM8 as described in Leung et al.
(2010), was also considered as a confounding variable. For the
longitudinal assessment, the atrophy rate was estimated by mea-
suring the difference in volume between baseline and repeat scans
normalised by the baseline scan. Because the number of days be-
tween baseline and 1-year scans was different between subjects,
this information was additionally used as a confounding variable.
Table 3
Subject demographics of the ADNI data set. Mean (SD) unless specified otherwise.

Controls MCI AD

# data sets 200 335 147
Gender, # male 106 213 78
Age, years 76.0 (5.1) 74.9 (7.2) 75.3 (7.3)
Scan. Interval, days 396.3 (46.0) 396.3 (24.3) 390.1 (22.6)
TIV, ml 1584 (144) 1567 (149) 1554 (154)
The results are shown in Fig. 6. Statistical differences were
calculated using a two tail unequal variance t-test and the signifi-
cance level was set to p < 10�3 due to the intrinsic pathological
variability.

The cross-sectional study shows statistically significant hippo-
campal volumetric differences between the different disease
groups. The mean volumes were also similar to previously
estimated manual and automatic volumes. For the longitudinal
study, even though atrophy rates were not derived directly from
the registered serial MR images or propagated from baseline to
repeat, the accuracy of the proposed method enables a direct
comparison between the volumes of the hippocampus at baseline
and 12-month follow up. Results shown in Fig. 6 and Table 4 show
statistically significant differences in the mean atrophy rate
between disease groups.

3.7. Multi-label segmentation propagation and comparison

The limited availability of template databases with multi-label s
does not allow as complex a validation as with the single label
scenario. Thus, only one leave-one-out cross validation was
performed, making the validation anecdotal for untested morphol-
ogies and severe pathological cases. A previously described tem-
plate library of 83 manually segmented regions from 30 subjects
was used (Hammers et al., 2003; Hammers et al., 2007). The med-
ian age of all subjects was 31 years, ranging from 20 to 54 years,
equal gender distributions and 83% right handed subjects. Scanner
parameters are described in Hammers et al. (2007). In order to as-
sess the accuracy for brain using STEPS, we performed a leave-one-
out segmentation validation on all the datasets. Each image was
first skull stripped using the method proposed by Segonne et al.
(2004). Then, for each one of the 30 datasets, the remaining 29
templates were first affinely registered (12 DOFs) using a block
matching approach (Ourselin et al., 2000) and then non-rigidly
aligned using a fast free-form registration algorithm (Modat
et al., 2010) to the image under study. The manual segmentations
were then propagated using the previously estimated transforma-
tions and resampled using nearest-neighbour interpolation in or-
der to maintain their binary nature. We compare STEPS to a
previously published state-of-the-art method called MAPER
(Heckemann et al., 2010); Yushkevich et al., 2010; Sabuncu et al.,
2010 and Artaechevarria et al., 2009. STEPS was also tested without
the MRF in order to show the improvements in accuracy and
smoothness. In order to provide a fair comparison between meth-
odologies, all the methods were compared using the same registra-
tion strategy. As the results from MAPER are highly dependent on
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Fig. 6. Cross-sectional and longitudinal study on 682 data sets from the ADNI database. Left: Total hippocampal volume (left + right side) at baseline; Right: Hippocampal
atrophy per year as a percentage of the baseline volume.

Table 4
Hippocampal volumes and change rates.

Controls MCI AD

Volumes (mm3)
Mean 5195 4786 4427
Median 5152 4733 4218
SD 656 781 903

Change rates (%/year)
Mean 1.09 2.74 4.04
Median 0.98 2.61 3.95
SD 3.0 3.5 3.6

Fig. 7. An example showing the template (top), the automated Multi-STEPS
segmentation (bottom-left) and the manual segmentation (bottom-right). Note
the smoothness of the boundaries for the automated segmentation method.
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the registration strategy, the results presented for the MAPER algo-
rithm were kindly provided to us by the author. Results are shown
in Table 5 and Fig. 7.

Results show that STEPS with the MRF outperforms the other
techniques in many key internal structures. More specifically,
STEPS outperforms the methods by Heckemann et al. (2010) (12
out of 83 structures), Yushkevich et al. (2010) (17 out of 83 struc-
tures), Sabuncu et al. (2010) (20 out of 83 structures) and Artaech-
evarria et al. (2009) (18 out of 83 structures) at p < 10�4. The
putamen was the only structure where another fusion algorithm
(MAPER) outperformed STEPS, but that difference was not statisti-
cally significant (p ¼ 0:02).

The MRF introduced in this model not only results in a segmen-
tation accuracy improvement but also improves the smoothness of
the boundary between the labels. Anatomically, each one of the
parcelated areas should have one single connected component. In
Table 5
Mean Dice coefficient for each structure, comparing the proposed method with and withou
Dice score is averaged. Results for a set of key internal grey matter structures are shown.

Structure name Fusion method

STEPS STEPS no MRF MAP

Hippocampus 0.842 0.840⁄ 0.828
Amygdala 0.805 0.803 0.789
Caudate Nucleus 0.892 0.890 0.891
Nuc. Accumbens 0.695 0.687⁄ 0.682
Putamen 0.891 0.888 0.894
Thalamus 0.894 0.892 0.887
Globus pallidus 0.798 0.793⁄ 0.771

⁄ Significantly higher Dice scores are shown, with ⁄⁄ representing p < 10�3.
⁄⁄ Significantly higher Dice scores are shown, with representing p < 10�4.
order to test the advantages of introducing the MRF into the
algorithm with regards to discontinuity, the average number of
connected components per parcelated area and per subject was
calculated for the proposed method with and without the MRF
and for the manual. The average (SD) number of connected
t MRF and MAPER (Heckemann et al., 2010). For bilateral structures, the left and right

ER Yushkevich Sabuncu Artaechevarria

⁄⁄ 0.832⁄ 0.820⁄⁄ 0.835⁄
⁄⁄ 0.788⁄⁄ 0.775⁄⁄ 0.795⁄

0.887⁄⁄ 0.887⁄⁄ 0.877⁄⁄
⁄⁄ 0.680⁄⁄ 0.667⁄⁄ 0.690⁄

0.890 0.874⁄⁄ 0.890
⁄⁄ 0.883⁄⁄ 0.886⁄⁄ 0.878⁄⁄
⁄⁄ 0.770⁄⁄ 0.773⁄⁄ 0.773⁄⁄
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components per parcelated area was 8:9ð1:3Þ; 13:7ð1:8Þ, and
4:08ð0:4Þ for STEPS with and without the MRF and for the manual
respectively. A Welch’s two-tailed paired t-test was performed in
order to test significance. These results show a statistically signif-
icant (p < 10�4) reduction in the mean number of connected com-
ponents per parcelated area when comparing STEPS with the MRF
to STEPS without the MRF. STEPS with the MRF still performs sig-
nificantly worse than the manual segmentation with regards to
discontinuity and fragmentation of parcelated areas.
4. Discussion

In this work, we have developed an extension of the popular
STAPLE algorithm that uses local intensity features to select the
best labels to fuse, a novel iterative MRF to ensure spatial consis-
tency and an uncertainty ROI optimisation to un-bias the algorithm
towards larger structures. Both the robustness and accuracy of the
segmentation were evaluated on the training set and in an inde-
pendent database of cross-sectional and longitudinal brain MRI
scans and tested the ability to directly use the segmentation for
volumetric and atrophy rate measurements.

The algorithm was first tested on a simulated phantom with
known ground truth segmentation, as a proof of concept. The
STEPS method performed better than the STAPLE-GNCC method,
presumably due to uncertainty caused by the lack of images in
the template database with the same overall morphology as the
image being segmented. Conversely, STEPS achieves a good overall
segmentation due to the finer anatomical scale of the metric, sug-
gesting that STEPS may enable the use of smaller template dat-
abases to describe the full population variability, leading to an
improvement in both accuracy and computation time.

The proposed method was then applied to clinical data for the
purpose of segmenting hippocampi. In order to find the parameters
that produce the most accurate segmentations, a leave-one-out
cross validation strategy was used to sample the overall accuracy
from the parameter space. Each component of the proposed meth-
od was tested independently in order to assess the contribution of
each one of the changes. To this end, we tested the contribution of
the local ranking against global and regional ranking, the contribu-
tion of the proposed MRF model against the model proposed by
Warfield et al. (2004) and STEPS without MRF, and also the contri-
bution of the uncertainty ROI selection. The proposed method was
then compared to publicly available techniques: STAPLE, Spatial-
STAPLE and the methods by Yushkevich et al. (2010); Sabuncu
et al. (2010) and Artaechevarria et al. (2009). Visual (see Fig. 2)
and quantitative assessment demonstrates good segmentation
accuracy and robustness, with the worst segmented image having
a Dice score of 0.888. The improvements proposed in STEPS all pro-
vide significantly advantages (p < 10�4) demonstrating the advan-
tage of combining the local ranking, the new MRF model, the ROI
optimisation strategies and the rater performance model. It also
performs significantly better than all the other tested fusion tech-
niques. Furthermore, the proposed method obtains a (mean 	 SD)
Dice score (0:925	 0:021) close to the inter-rater variability of the
manual segmentors (0:93	 0:03), assessed on a different database
(Leung et al., 2010).

Another advantage of local ranking strategies is that they
implicitly encode local morphological variability rather than global
morphological variability. Fewer anatomical templates are needed
to deal with the population’s overall morphological variability. In
order to test this idea, a second experiment was performed in order
to show that local ranking can still obtain the higher segmentation
accuracy as global ranking when using fewer anatomical tem-
plates. This is advantageous because if one can represent complex
shapes with fewer samples, the need for a large and accurate
template database is greatly reduced. The results of the jackknifing
shown in Section 3.4 demonstrate that STEPS can obtain signifi-
cantly better segmentation accuracy, when measured using the
Dice score, than the STAPLE-ROINCC label fusion algorithm, even
when using three times fewer templates. As expected, there is a
small shift of the Dice score peak for the optimal value of X be-
tween different database sizes with the optimal value of X shifting
to higher values with an increase in database size. Another inter-
esting fact, not present in Fig. 5 is the consistent and significant
reduction, when compared to STEPS - Cons and Leung et al., in
the standard deviation of the Dice score per data set after the 10
simulations. This means that the proposed STEPS method not only
produces better results but is also less dependent on the choice of
data sets the template database is composed. This is important
in situations where no knowledge is available about the morphol-
ogy of a population or when the database size in inherently small.

This extra robustness with regards to database size can be
exploited to improve computational efficiency. One can enforce
morphological sparseness of the template database by learning
the manifold structure of the data from a set of deformation fields
to a group-wise space. This sparse representation of the morpho-
logical characteristics of the population would greatly reduce the
computational complexity without degrading the segmentation
accuracy. One should note that this effect was validated only on
AD, MCI and controls using a template library based of AD and con-
trols. It remains to be seen if results hold for hippocampi with dif-
ferent atrophy patterns and different intensity profiles such as in
hippocampal sclerosis and certain atrophy syndromes like fronto-
temporal lobar degeneration and semantic dementia.

All experiments summarised above were performed on the
training set using either leave-one-out cross validation or jackknif-
ing. To test the performance of the fusing strategy on data from a
different database acquired with a different MRI imaging systems
and protocols, the same label fusion techniques were also used
to segment a subset of data from the ADNI database with manual
segmentations. Using the parameters optimised in Section 3.3,
STEPS achieved a Dice accuracy above 0.9, significantly higher
(p < 10�3) than all the other fusion methods, mainly due to the
limited sample size. One can argue that the flat and larger plateau
in the parameter selection of STEPS makes the segmentation less
sensitive to changes in the imaging protocol, contrast and noise.

In a single label scenario, the STEPS algorithm was finally used
to segment the hippocampi of all 682 1.5T ADNI data sets at base-
line with 12-month repeat. Using the baseline data for a cross-sec-
tional study, the volumetric results described in Section 3.6 show
the expected significant separability in terms of volume, between
AD, MCI and controls. Using both the baseline and 12-month re-
peat in a longitudinal study, the results show again significant
group discrimination between AD, MCI and controls. The atrophy
rates are in line with those previously reported, with a mean hip-
pocampal atrophy rate (%/year) of 4.04, 2.74 and 1.09 for the AD,
MCI and control subjects respectively. These results were achieved
using volumetric data from the binary hippocampal segmentations
combined with tissue segmentation. We hypothesise that should
baseline and followup scans be treated non-independently with re-
gards to the template propagation or if the measurement of atro-
phy was changed to the boundary shift integral (Leung et al.,
2010), our longitudinal measures would reduce in terms of noise
or variability with possibly improved disease group separation.

Lastly, in a multi-label propagation scenario, the algorithm was
tested against the same set of fusion techniques. Results showed
significant increases in segmentation performance, mainly in key
internal grey matter structures like the hippocampus, amygdala,
thalamus, globus pallidus and nucleus accumbens, known to be
associated with several diseases. Furthermore, the statistically sig-
nificant reduction in the number of connected components per
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structure shows the advantage of using STEPS with the MRF spatial
smoothness term when compared to STEPS without MRF. Due to
the locality of the similarity metric, we also speculate that the pro-
posed methodology should provide improvements in the of patho-
logical subjects and patients with different brain morphologies.
However, further validation of multi-atlas based brain is necessary
as the current findings are anecdotal for untested morphologies
and pathological cases. This is specifically important in pathologi-
cal situations that lead to large anatomical deformations (e.g. ven-
triculomegaly, highly atrophied brains), as some of these
morphological changes might no be correctly captured by the
non-rigid image registration step. In order to reduce the complex-
ity and consequently the errors of the mapping between morpho-
logically dissimilar images, the segmentations can be propagated
via morphologically similar intermediate datasets using an ap-
proach similar to the one proposed by Wolz et al. (2010) and
Cardoso et al. (2012).

The current limitations of the proposed work are mostly related
with the similarity metric. As previously described, even though
the LNCC metric has many advantages when compared to a global
metric, the local support of the metric can be problematic in low
contrast areas. For example, if the non-rigid mapping between a
normal subject and an AD patient with enlarged ventricles does
not perform well enough, an area in the patient’s ventricular cere-
brospinal fluid can be mapped and will correlate very well with the
white matter area in the normal subject. This problem is caused by
the local normalisation of the mean intensity between the two re-
gions and can be ameliorated by a multi-level version of the same
metric or by combining both local and global similarity metrics.
Furthermore, as suggested by Souvenir and Pless (2007) and Car-
doso et al. (2012), the local intensity similarity metric can also be
augmented by a morphological similarity metric based on the local
displacement between mapped regions, thus introducing knowl-
edge about anatomical shape changes. Nonetheless, the proposed
framework is general enough and allows the replacement of the
LNCC metric by any other similarity metric. Finally, because the
proposed method and Spatial-STAPLE share the same construction
and because they both seem to model rater and registration errors
quite well, we believe that mixing both the proposed strategy and
the spatially varying rater performance estimation of Spatial-STA-
PLE, i.e. calculating spatially variant performance parameters only
in areas with uncertainty, would provide further improvements in
the accuracy of the method.

In this paper, the focus has been on improving both the accu-
racy and robustness of segmentation propagation techniques by
improving the label fusion component. Nonetheless, the algo-
rithm’s accuracy is still dependent, though to a smaller degree,
on the quality of the manual segmentations and the type of pathol-
ogies and atrophy patterns represented in the template database.
Further validation is still necessary in order to enable the unsuper-
vised use of this algorithm in a clinical setting and for different dis-
ease groups. Additionally, the manual segmentation protocols can
also be improved in order to avoid arbitrary cutoffs of structures,
like the tail of the hippocampus, which may negatively affect the
algorithm accuracy.
5. Conclusion

This paper presents a new algorithm, called STEPS, that incorpo-
rates a fast locally normalised cross correlation (LNCC) based
ranking combined with a consensus based ROI selection and a
new iterative MRF into the STAPLE formulation. The algorithm
was first tested on a database of manually segmented hippocampi
using a leave-one-out cross validation. Results show a significant
improvement in terms of Dice overlap when compared to
state-of-the-art label fusion algorithms, achieving a mean Dice
score of 0.925. The STEPS label fusion technique also achieved bet-
ter accuracy than globally ranked techniques even when using only
a third of the templates, diminishing the necessity of large tem-
plate databases. When tested on an independent database with
data sets from different MRI imaging systems and protocols, STEPS
still achieved an average Dice score above 0.9, again significantly
higher than other techniques. Furthermore, cross-sectional and
longitudinal hippocampal volumetric studies showed expected sig-
nificant differences in volume and atrophy rates between AD, MCI
and controls. Finally, when applied to multi-atlas segmentation
propagation, STEPS showed a statistically significant increase in
segmentation accuracy in several key brain structures when
compared to MAPER and the methods by Yushkevich et al.
(2010); Sabuncu et al. (2010) and Artaechevarria et al. (2009).
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Appendix A. Clinical data

Data used in the preparation of this article were obtained from
the Alzheimers Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the
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National Institute on Ageing (NIA), the National Institute of Bio-
medical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and
non-profit organisations, as a $60 million, 5-year public–private
partnership. The primary goal of ADNI has been to test whether se-
rial magnetic resonance imaging (MRI), positron emission tomog-
raphy (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzhei-
mers disease (AD). Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and cli-
nicians to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Wei-
ner, MD, VA Medical Center and University of California San Fran-
cisco. ADNI is the result of efforts of many co- investigators from a
broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the US and
Canada. The initial goal of ADNI was to recruit 800 adults, ages 55–
90, to participate in the research, approximately 200 cognitively
normal older individuals to be followed for 3 years, 400 people
with MCI to be followed for 3 years and 200 people with early
AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org.

Appendix B. ADNI data used in Section 3.5

The following scans from the ADNI database were used in Sec-
tion 3.5: 109935125-005-1 160830125-005-1 174105125-005-1
51435125-005-1 1425125-005-1 68085125-005-1 77310125-
005-1 92610125-005-1 126180125-005-1 166365125-005-1
186705125-005-1 52605125-005-1 63945125-005-1 70380125-
005-1 80190125-005-1 98280125-005-1 150075125-005-1
168300125-005-1 46260125-005-1 55575125-005-1 64485125-
005-1 73665125-005-1 82530125-005-1 151830125-005-1
170460125-005-1 49095125-005-1 60705125-005-1 66060125-
005-1 74745125-005-1 85185125-005-1.

References

Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D., 2009. Multi-
atlas based segmentation of brain images: atlas selection and its effect on
accuracy. NeuroImage 46 (3), 726–738.

Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de Solorzano, C., 2009. Combination
strategies in multi-atlas image segmentation: application to brain MR data. IEEE
Transactions on Medical Imaging 28 (8), 1266–1277.

Asman, A.J., Landman, B.A., 2011. Robust statistical label fusion through consensus
level, labeler accuracy, and truth estimation (COLLATE). IEEE Transactions on
Medical Imaging 30 (10), 1779–1794.

Asman, A.J., Landman, B.A., 2012. Formulating spatially varying performance in the
statistical fusion framework. IEEE Transactions on Medical Imaging 31 (6),
1326–1336.

Barnes, J., Foster, J., Boyes, R.G., Pepple, T., Moore, E.K., Schott, J.M., Frost, C., Scahill,
R.I., Fox, N.C., 2008. A comparison of methods for the automated calculation of
volumes and atrophy rates in the hippocampus. NeuroImage 40 (4), 1655–1671.

Barnes, J., Bartlett, J.W., van de Pol, L.A., Loy, C.T., Scahill, R.I., Frost, C., Thompson,
P.M., Fox, N.C., 2009. A meta-analysis of hippocampal atrophy rates in
Alzheimer’s disease. Neurobiology of Aging 30 (11), 1711–1723.

Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N., 2003. Iconic feature
based nonrigid registration: the PASHA algorithm. Computer Vision and Image
Understanding 89 (2–3), 272–298.

Cardoso, M.J., Leung, K.K., Modat, M., Barnes, J., Ourselin, S., 2011. Locally Ranked
STAPLE for Template based Segmentation Propagation, MICCAI Workshop on
Multi-Atlas Labeling and Statistical Fusion.

Cardoso, M.J., Clarkson, M.J., Ridgway, G.R., Modat, M., Fox, N.C., Ourselin, S., 2011a.
The Alzheimer’s disease neuroimaging initiative, LoAd: a locally adaptive
cortical segmentation algorithm. NeuroImage 56 (3), 1386–1397.

Cardoso, M.J., Wolz, R., Modat, M., Fox, N., Rueckert, D., Ourselin, S., 2012. Geodesic
information flows. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (Eds.),
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012.
Springer Berlin/Heidelberg, Berlin, Heidelberg, pp. 262–270.

Collins, D.L., Pruessner, J.C., 2010. Towards accurate, automatic segmentation of the
hippocampus and amygdala from MRI by augmenting ANIMAL with a template
library and label fusion. NeuroImage 52 (4), 1355–1366.
Commowick, O., Akhondi-Asl, A., Warfield, S.K., 2012. Estimating a reference
standard segmentation with spatially varying performance parameters: local
MAP STAPLE. IEEE Transactions on Medical Imaging 31 (8), 1593–1606.

Dubois, B., Feldman, H.H., Jacova, C., Cummings, J.L., DeKosky, S., Barberger-Gateau,
P., Delacourte, A., Frisoni, G.B., Fox, N.C., Galasko, D., Gauthier, S., Hampel, H.,
Jicha, G.A., Meguro, K., O’Brien, J., Pasquier, F., Robert, P., Rossor, M.N., Salloway,
S., Sarazin, M., de Souza, L.C., Stern, Y., Visser, P.J., Scheltens, P., 2010. Revising
the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9 (11),
1118–1127.

Frisoni, G.B., Jack, C.R., 2011. Harmonization of magnetic resonance-based manual
hippocampal segmentation: a mandatory step for wide clinical use. Alzheimer’s
and Dementia 7 (2), 171–174.

Hammers, A., Allom, R., Koepp, M.J., Free, S.L., Myers, R., Lemieux, L., Mitchell, T.N.,
Brooks, D.J., Duncan, J.S., 2003. Three-dimensional maximum probability atlas
of the human brain, with particular reference to the temporal lobe. Human
Brain Mapping 19 (4), 224–247.

Hammers, A., Chen, C.-H., Lemieux, L., Allom, R., Vossos, S., Free, S.L., Myers, R.,
Brooks, D.J., Duncan, J.S., Koepp, M.J., 2007. Statistical neuroanatomy of the
human inferior frontal gyrus and probabilistic atlas in a standard stereotaxic
space. Human Brain Mapping 28 (1), 34–48.

Heckemann, R.A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J.V., Hammers, A.,
2010. Alzheimer’s disease neuroimaging initiative, improving intersubject
image registration using tissue-class information benefits robustness and
accuracy of multi-atlas based anatomical segmentation. NeuroImage 51 (1),
221–227.

Henneman, W.J.P., Sluimer, J.D., Barnes, J., van der Flier, W.M., Sluimer, I.C., Fox, N.C.,
Scheltens, P., Vrenken, H., Barkhof, F., 2009. Hippocampal atrophy rates in
Alzheimer disease: added value over whole brain volume measures. Neurology
72 (11), 999–1007.

Jack, C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F.,
Waring, S.C., Tangalos, E.G., Kokmen, E., 1999. Prediction of AD with MRI-based
hippocampal volume in mild cognitive impairment. Neurology 52 (7), 1397–
1403.

Jack, C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F.,
Tangalos, E.G., Kokmen, E., 2000. Rates of hippocampal atrophy correlate with
change in clinical status in aging and AD. Neurology 55 (4), 484–489.

Jack, C.R., Barkhof, F., Bernstein, M.A., Cantillon, M., Cole, P.E., DeCarli, C., Dubois, B.,
Duchesne, S., Fox, N.C., Frisoni, G.B., Hampel, H., Hill, D.L.G., Johnson, K., Mangin,
J.-F.F., Scheltens, P., Schwarz, A.J., Sperling, R.A., Suhy, J., Thompson, P.M.,
Weiner, M.W., Foster, N.L., 2011. Steps to standardization and validation of
hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion
for Alzheimer’s disease. Alzheimer’s and Dementia 7 (4), 474–485.

Lam, L., Suen, C.Y., 1995. Optimal combinations of pattern classifiers. Pattern
Recognition Letters 16 (9), 945–954.

Leung, K.K., Barnes, J., Ridgway, G.R., Bartlett, J.W., Clarkson, M.J., Macdonald, K.,
Schuff, N., Fox, N.C., Ourselin, S., 2010. Alzheimer’s disease neuroimaging
initiative, automated cross-sectional and longitudinal hippocampal volume
measurement in mild cognitive impairment and Alzheimer’s disease.
NeuroImage 51 (4), 1345–1359.

Lötjönen, J., Wolz, R., Koikkalainen, J., Julkunen, V., Thurfjell, L., Lundqvist, R.,
Waldemar, G., Soininen, H., Rueckert, D., 2011. Alzheimer’s disease
neuroimaging initiative, fast and robust extraction of hippocampus from
MR images for diagnostics of Alzheimer’s disease. NeuroImage 56 (1), 185–
196.

Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox,
N.C., Ourselin, S., 2010. Fast free-form deformation using graphics processing
units. Computer Methods and Programs in Biomedicine 98 (3), 278–284.

Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Avedissian, C., Madsen, S.K.,
Parikshak, N., Toga, A.W., Jack, C.R., Schuff, N., Weiner, M.W., Thompson, P.M.,
2009. Alzheimer’s disease neuroimaging initiative, automated mapping of
hippocampal atrophy in 1-year repeat MRI data from 490 subjects with
Alzheimer’s disease, mild cognitive impairment, and elderly controls.
NeuroImage 45 (1 Suppl.), S3–15.

Ourselin, S., Roche, A., Prima, S., Ayache, N., 2000. Block matching: a general
framework to improve robustness of rigid registration of medical images. In: G.
Goos, J. Hartmanis, J. Leeuwen, S.L. Delp, A.M. DiGoia, B. Jaramaz (Eds.), Medical
Image Computing and Computer-Assisted Intervention, MICCAI 2000, pp. 557–
566.

Ourselin, S., Roche, A., Subsol, G., Pennec, X., 2001. Reconstructing a 3D structure
from serial histological sections. Image and Vision Computing 19, 25–31.

Ridha, B.H., Barnes, J., van de Pol, L.A., Schott, J.M., Boyes, R.G., Siddique, M.M.,
Rossor, M.N., Scheltens, P., Fox, N.C., 2007. Application of automated medial
temporal lobe atrophy scale to Alzheimer disease. Archives of Neurology 64 (6),
849–854.

Rohlfing, T., Russakoff, D.B., Maurer Jr, C.R., 2004. Performance-based classifier
combination in atlas-based image segmentation using expectation-
maximization parameter estimation. IEEE Transactions on Medical Imaging
23 (8), 983–994.

Sabuncu, M.R., Yeo, B.T.T., Van Leemput, K., Fischl, B., Golland, P., 2010. A generative
model for image segmentation based on label fusion. IEEE Transactions on
Medical Imaging 29 (10), 1714–1729.

Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L.M., Trojanowski, J.Q.,
Thompson, P.M., Jack, C.R., Weiner, M.W., 2009. Alzheimer’s disease
neuroimaging initiative, MRI of hippocampal volume loss in early Alzheimer’s
disease in relation to ApoE genotype and biomarkers. Brain 132 (Pt 4), 1067–
1077.

http://www.adni-info.org


684 M. Jorge Cardoso et al. / Medical Image Analysis 17 (2013) 671–684
Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D.H., Hahn, H., Fischl, B., 2004. A
hybrid approach to the skull stripping problem in MRI. NeuroImage 22 (3),
1060–1075.

Souvenir, R., Pless, R., 2007. Image distance functions for manifold learning. Image
and Vision Computing 25 (3), 365–373.

Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo,
T., Jack, C.R., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers,
E., Stern, Y., Yaffe, K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., Wagster,
M.V., Phelps, C.H., 2011. Toward defining the preclinical stages of Alzheimer’s
disease: recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimer’s and Dementia 7 (3), 280–292.

Warfield, S.K., Zou, K.H., Wells III, W.M., 2004. Simultaneous truth and performance
level estimation (STAPLE): an algorithm for the validation of image
segmentation. IEEE Transactions on Medical Imaging 23 (7), 903–921.
Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D., 2010. Alzheimer’s
disease neuroimaging initiative, LEAP: learning embeddings for atlas
propagation. NeuroImage 49 (2), 1316–1325.

Woods, K., Kegelmeyer, W.P., Bowyer, K., 1997. Combination of multiple classifiers
using local accuracy estimates. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19 (4), 405–410.

Xu, L., Krzyzak, A., Suen, C.Y., 1992. Methods of combining multiple classifiers and
their applications to handwriting recognition. IEEE Transactions on Systems
Man and Cybernets 22 (3), 418–435.

Yushkevich, P.A., Wang, H., Pluta, J., Das, S.R., Craige, C., Avants, B.B., Weiner, M.W.,
Mueller, S., 2010. Nearly automatic segmentation of hippocampal subfields in
in vivo focal T2-weighted MRI. NeuroImage 53 (4), 1208–1224.


	STEPS: Similarity and Truth Estimation for Propagated Segmentations  and its application to hippocampal segmentation and brain parcelation
	1 Introduction
	2 Methods
	2.1 The STAPLE algorithm
	2.2 Iterative MRF regularization
	2.3 Global and region-of-interest based ranking
	2.4 Local ranking for segmentation propagation
	2.5 STAPLE with local ranking
	2.6 Performance parameter bias due to structure size
	2.7 Multi-label extention

	3 Validation
	3.1 Phantom validation
	3.2 Hippocampal segmentation
	3.3 Parameter optimisation and algorithm comparison
	3.4 Robustness to database size reduction
	3.5 Validation on a subset of the ADNI database
	3.6 Hippocampal measures on the full ADNI data-set
	3.7 Multi-label segmentation propagation and comparison

	4 Discussion
	5 Conclusion
	Acknowledgments
	Appendix A Clinical data
	Appendix B ADNI data used in Section 3.5
	References


